

программируемый логический контроллер АГАВА ПЛК-60

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

АГСФ.421445.010 РЭ Редакция 1.1

> Екатеринбург 2021

Содержание

Соде	ржание	3
Введ	ение	4
	азначение	
1.1.	Используемые термины и сокращения	
1.2.	Условное обозначение прибора	
2. 0	снащение прибора	7
2.1.	Состав прибора	7
2.2.	Технические характеристики прибора и условия эксплуатации	7
3. У	стройство и принцип работы прибора	9
3.1.	Состав программного обеспечения прибора	9
3.2.	Порядок работы с прибором	9
4. P	абота прибора с CODESYS V3.5	10
5. O	бновление программных компонентов ПЛКП	11
5.1.	Обновление среды исполнения CODESYS	11
5.2.	Обновление проекта CODESYS с использованием системной утилиты	12
6. K	омплектность	13
7. Гарантийные обязательства		

Введение

Руководство по эксплуатации содержит сведения, необходимые для обеспечения правильной эксплуатации и полного использования технических возможностей программируемого логического контроллера АГАВА ПЛК-60, далее по тексту: прибор, ПЛК или контроллер.

1. Назначение

Программируемый логический контроллер АГАВА ПЛК-60 предназначен для создания систем автоматизированного управления технологическим оборудованием в различных областях промышленности, жилищно-коммунального и сельского хозяйства.

Аппаратной платформой ПЛК служит промышленный контроллер АГАВА ПК-60. Поэтому перед использованием ПЛК следует ознакомиться с документом АГСФ.421445.009 РЭ «Промышленный контроллер АГАВА ПК-60. Руководство по эксплуатации», в котором детально описаны характеристики, устройство и принцип работы, субмодули расширения, подготовка, настройка, техническое обслуживание и правила транспортирования и хранения прибора. В данном руководстве приведены только специфические сведения, касающиеся использования прибора в качестве ПЛК.

Логика работы ПЛК определяется потребителем в процессе программирования контроллера. Программирование осуществляется с помощью среды разработки проекта CODESYS v3.5 SP10+.

Проекты могут быть разработаны с использованием любого из языков стандарта IEC 61131-3: SFC: Sequential Function Chart (или Grafcet), FBD: Function Block Diagram, LD: Ladder Diagram, ST: Structured Text, а также языка CFC: Continuous Function Chart.

1.1. Используемые термины и сокращения

ПК – персональный компьютер;

ПЛК – программируемый логический контроллер;

СП – среда программирования CODESYS v3.5 SP10+;

ОС – операционная система;

ПО – программное обеспечение;

ОЗУ – оперативное запоминающее устройство;

ФС – файловая система.

1.2. Условное обозначение прибора

АГАВА ПЛК-60.SD.WF (YY-ZZ-...)

где

- SD вариантное исполнение с microSD картой;
- WF вариантное исполнение с интерфейсом Wi-Fi.
- YY, ZZ... перечисление условных обозначений субмодулей в порядке их установки в слоты A F (если субмодуль не установлен в определенный слот, то соответствующая позиция в обозначении помечается символом X):
 - AI субмодуль аналоговых входов;
 - АІО − субмодуль аналоговых входов / выходов;
 - ТМР субмодуль измерения температуры;
 - О I − субмодуль дискретных входов;
 - о DO субмодуль дискретных выходов типа «открытый коллектор»;
 - SIM субмодуль дискретных выходов типа «симистор»;
 - о R субмодуль дискретных выходов типа «реле»;
 - 485 − субмодуль интерфейсов RS-485;
 - CAN субмодуль интерфейсов CAN;

- о DO6 субмодуль дискретных выходов типа «открытый коллектор» (шестиканальный);
- ENI субмодуль энкодера.

Пример полного условного обозначения прибора:

АГАВА ПЛК-60.WF (AI-AI-TMP-DI-DO-X) — контроллер с интерфейсом Wi-Fi без microSD карты, с установленными субмодулями: в слоте $A-AI,\,B-AI,\,C-TMP,\,D-DI,\,E-DO.\,B$ слоте F субмодуль отсутствует.

2. Оснащение прибора

2.1. Состав прибора

Прибор состоит из аппаратной платформы — промышленного контроллера АГАВА ПК-60, работающего под управлением ОС Linux с соответствующим размером диагонали экрана и специального программного обеспечения — среды исполнения CODESYS, позволяющего выступать прибору в качестве программируемого логического контроллера.

2.2. Технические характеристики прибора и условия эксплуатации

Технические характеристики и условия эксплуатации ПЛК соответствуют техническим характеристикам и условиям эксплуатации аппаратной платформы прибора — АГАВА ПК-60, которые приведены в документе АГСФ.421445.009 РЭ «Промышленный контроллер АГАВА ПК-60. Руководство по эксплуатации».

Общие сведения				
Конструктивное исполнение	Моноблок на DIN-рейку.			
Габаритные размеры (ВхШхГ), мм:				
ΑΓΑΒΑ ΠΚ-60	$138 \times 123 \times 77$			
AΓABA ΠΚ-60.WF	195 × 151 × 77 – с установленной антенной			
	138 × 123 × 77 – без антенны (с внешней ан-			
	тенной)			
Масса ПК, не более, кг	0,35			
Степень защиты корпуса	IP20			
Напряжение питания	$24\ \mathrm{B}\pm10\ \%$ постоянного тока			
Потребляемая мощность, не более	12 B _T			
Аппаратные ресурсы				
Микроконтроллер	32-разрядный, Cortex-A8 600 МГц, L2-кэш			
	256 Кб			
Объем и тип оперативной памяти	256 M6 DDR3			
Объем и тип флеш-памяти	256 M6 NAND			
Объем и тип энергонезависимого ОЗУ	8 K6 FRAM			
Объем SD-карты (для ПК-60.SD)	до 2 Тб			
Часы реального времени	Есть			
Сторожевой таймер	Есть			
Поддержка реального времени	Есть			
Интерфейсы загрузки программ	Ethernet, USB (RNDIS)			
Интерфейсы				
Ethernet	10/100 Мб/с, гальваническая развязка, 1 шт.			
Wi-Fi (для ПК-60.WF)	802.11 b/g/n, антенна внешняя, макс. чув-			
	ствительность приемника 97 дБм, макс.			
	мощность передатчика 21.1 дБм, тип разъ-			
	ема для антенны – SMA-F, 1шт.			
RS-485	Групповая гальваническая развязка, ско-			
	рость до 1 Мб/с, 2 шт. (с субмодулем 485 –			
	230.4 Кб/с, 4 шт.)			
RS-232	Скорость до 460 Кб/с, разъем RJ12 (сиг-			
	налы RX, TX, RTS, CTS), 1 шт.			
САN (субмодуль)	Скорость до 1 Мбит/с, гальваническая раз-			
	вязка, ISO11898-2, 1шт.			

USB 2.0	1.5, 12, 480 Mб/c, OTG, miniUSB, 1шт.			
Набираемые субмодули ввода-вывода	До 6 шт.			
Человеко-машинный интерфейс				
Индикация	Индикаторы приема-передачи интерфей-			
	сов RS-485 и Ethernet			
	Двуцветный программируемый индикатор			
	«STATE»			
Органы управления	Джампер «DEF»			
Программные ресурсы				
Операционная система	Linux RT 4.4.12, реального времени			
Характеристики подключаемых устройств хранения данных USB-flash				
Версии спецификации USB	2.0 LS, FS, HS			
Типы файловых систем	FAT (12, 16, 32), NTFS, ext (2, 3, 4)			
Максимальная емкость USB-накопителя	2 Тб			
Характеристики подключаемых устройств хранения данных SD-карт				
(для ПК-60.SD)				
Версии спецификации SD	2.00 часть А2			
Turry CD room	microSD (до 2 Гб), microSDHC (до 32 Гб),			
Типы SD-карт	microSDXC (до 2 Тб)			
Класс скорости	SD class 2 и выше			
Типы файловых систем	FAT (12, 16, 32), NTFS, ext (2, 3, 4)			
Максимальная емкость SD-накопителя	2 T6			

3. Устройство и принцип работы прибора

3.1. Состав программного обеспечения прибора

Программное обеспечение прибора состоит из трех частей:

- системное ПО аппаратной платформы загрузчик ОС и ОС Linux;
- специальное программное обеспечение ПЛК среда исполнения CODESYS, работающая под управлением ОС Linux, выполняющая машинно-независимый код проекта, созданный средой программирования CODESYS;
- прикладное ПО проект, создаваемый пользователем на языках IEC 61131 в среде программирования CODESYS, выполняемый средой исполнения и определяющий логику работы ПЛК.

Прибор поставляется с установленными системным и специальным ПО.

3.2. Порядок работы с прибором

OC Linux служит базовой операционной системой реального времени, которое предоставляет доступ к оборудованию контроллера и на базе которой выполняется прикладное ПО, такое как среда исполнения CODESYS либо другое специальное программное обеспечение.

3.2.1. Включение и загрузка

При включении прибора сначала выполнение передается загрузчику, потом запускается OC и затем запускается прикладное ΠO .

Загрузчик ОС выполняет распаковку образа ОС, его размещение в ОЗУ и запуск загрузки ОС. Во время работы загрузчика загорается светодиод «STATE» зеленым цветом, далее при загрузке ОС светодиод гаснет.

3.2.2. Системная утилита

Системная утилита предназначена для настройки прибора, а также для обновления и восстановления проекта CODESYS. Порядок работы с утилитой описан в документе АГСФ.421445.009 РЭ01 «Промышленный контроллер АГАВА ПК-60. Руководство по эксплуатации. Приложение 1. Описание системной утилиты».

4. Работа прибора с CODESYS V3.5

Детальное описание работы в среде программирования (СП) CODESYS приводится в документации, поставляемой вместе с СП CODESYS. Описание библиотек СП CODESYS для работы с ПЛК приведено в документе «АГСФ.421445.005 Руководство программиста CODESYS».

5. Обновление программных компонентов ПЛК

Прибор поставляется с установленными базовыми программными компонентами. В процессе эксплуатации прибора может возникнуть необходимость их обновления. Файлы программных компонентов могут быть получены через сайт изготовителя www.kb-agava.ru либо предоставлены по запросу.

Базовое программное обеспечение для ПЛК состоит из следующих модулей:

- загрузчик;
- OC Linux;
- корневая файловая система;
- система исполнения CODESYS.

Порядок обновления загрузчика, ОС Linux и корневой файловой системы приведен в документе АГСФ.421445.009 РЭ «Промышленный контроллер АГАВА ПК-60. Руководство по эксплуатации». В настоящем руководстве приводится порядок обновления системы исполнения CODESYS.

5.1. Обновление среды исполнения CODESYS

Обновление системы исполнения CODESYS может быть выполнено либо копированием компонентов CODESYS, либо при помощи менеджера пакетов opkg.

5.1.1. Обновление среды исполнения CODESYS копированием

Для проведения обновления среды исполнения копированием выполните следующие операции в указанном порядке.

- 1. Включите ПЛК и дождитесь его загрузки.
- 2. Подключитесь к контроллеру через sftp-клиент или SSH.
- 3. Сделайте резервную копию каталога /usr/bin/codesys.
- 4. Поместите новые файлы системы исполнения CODESYS в каталог /usr/bin/codesys (перезаписав старые).
- 5. Перезагрузите ПЛК командой reboot.

5.1.2. Обновление CODESYS с использованием менеджера пакетов

Для проведения обновления среды исполнения с использованием менеджера пакетов выполните следующие операции в указанном порядке.

- 1. Включите ПЛК и дождитесь его загрузки.
- 2. Подключитесь к контроллеру через sftp-клиент или SSH.
- 3. Поместите пакет с обновлением agava-codesys.ipk в контроллер (через SSH, sftp и т. п.).
- 4. Подайте команду установки обновления:

 opkg upgrade <путь до пакета>agava-codesys.ipk
- 5. Перезагрузите ПЛК командой reboot.

5.2. Обновление проекта CODESYS с использованием системной утилиты

Обновление проекта CODESYS с помощью системной утилиты производится в следующем порядке:

1) Создать загрузочный архив с проектом CODESYS, для этого открыть проект в среде CODESYS и создать загрузочное приложение (Главное меню \ Онлайн \ Создать загрузочное приложение \ Сохранить), полученные файлы поместить в архив формата «ZIP», в итоге должен получиться архив, содержащий в корне три файла (папка «PlcLogic» и два файла «Application.app, Application.crc».

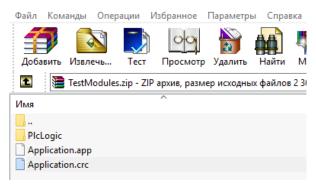


Рисунок 1 – Создание загрузочного архива

- 2) Подготовить USB-flash-носитель, предварительно отформатировав его в файловую систему FAT32. Поместить полученный архив в корень flash-носителя.
- 3) Перейти в системную утилиту, перезагрузив ПЛК-60, при загрузке во время однократного звукового сигнала нажать на экран и удерживать до повторного звукового сигнала. Ввести пароль 111111.
- 4) Перейти на вкладку «Обновление», затем подключить flash-носитель через переходник USB-OTG, выбрать из списка загрузочный архив, нажать кнопку «Обновить». Дождаться сообщения «Обновление успешно» и нажать кнопку «ОК».
- 5) Перейти на вкладку «Перезапуск» и нажать кнопку «Перезапуск».

6. Комплектность

Комплектность прибора приведена в паспорте к прибору АГСФ.421445.010 ПС «АГАВА ПЛК-60. Паспорт».

7. Гарантийные обязательства

Гарантийный срок эксплуатации – 12 месяцев со дня продажи.

В случае выхода контроллера из строя в течение гарантийного срока при условии соблюдения потребителем правил транспортирования, хранения, монтажа и эксплуатации предприятие-изготовитель обязуется осуществить его бесплатный ремонт.

Для отправки в ремонт необходимо вложить в тару с контроллером паспорт, акт отказа и отправить по адресу:

620026, г. Екатеринбург, ул. Бажова 174, 3-й этаж, КБ «Агава»

тел/факс: (343) 262-92-76 (78, 87), e-mail: <u>agava@kb-agava.ru</u>

©1996–2021 гг. Конструкторское бюро «АГАВА» Использование приведенных в настоящем документе материалов без официального разрешения КБ «АГАВА» запрещено.

Все права защищены.