

ООО Конструкторское Бюро "АГАВА"

620026 г. Екатеринбург, ул. Бажова 174, 3 этаж, т/ф. (343) 262-92-76 (78, 87); agava@kb-agava.ru http://www.kb-agava.ru/

АДИ-01.5 ЦИФРОВОЙ ЗАДАТЧИК ТОКА

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ АД 00.00.001 РЭ /Редакция 7.00/

Екатеринбург 2015г. Настоящее руководство по эксплуатации распространяется на устройства задания тока, разработанные ООО КБ «Агава», и служит для ознакомления с их конструкцией, техническими характеристиками, изучения правил использования, технического обслуживания, хранения и транспортирования.

1 ОПИСАНИЕ ИЗДЕЛИЯ

1.1 Назначение изделия

АДИ-01.5 (далее по тексту – прибор) предназначен для:

- формирования токового сигнала, пропорционального величине заданного с панели управления прибора произвольного физического параметра. Выходной ток прибора изменяется в диапазоне 4 – 20 мА и зависит от положения движка потенциометра-задатчика или от заданного с панели управления прибора цифрового значения;
- индикации в цифровом виде задаваемого параметра.

1.2 Технические характеристики

- 1.2.1 Внешний вид и габаритные размеры прибора приведены в Приложении А
- 1.2.2 Масса прибора в штатной упаковке не превышает 300 гр.
- 1.2.3 Диапазон изменения сопротивления задающего потенциометра от 0 до 4.7 кОм.
- 1.2.4 Границы диапазона, задаваемого параметра, настраиваются пользователем и лежат в пределах от -999 до 999;
- 1.2.5 Электрические параметры
 - 1) Цепи питания прибора:
 - электрическое питание прибора осуществляется от источника постоянного тока напряжением 24 В;
 - потребляемый ток не превышает 75 мА;
 - нестабильность напряжения питания не должна превышать по абсолютной величине 10 % от значения напряжения питания;
 - пульсация напряжения питания не должна превышать 1 % от значения напряжения питания.
 - 2) Цепи выходного тока:
 - сопротивление нагрузки токового выхода, не более 500 Ом.
- 1.2.6 Условия эксплуатации:
 - 1) Прибор по степени воздействия температуры и влажности окружающего воздуха относятся к группе В4 по ГОСТ 12997-84.
 - 2) Прибор предназначен для эксплуатации в районах с умеренным климатом и изготовляется с климатическим исполнением УХЛ по ГОСТ 15150-69.
 - 3) Прибор имеет степень пылевлагозащищенности IP 20 по ГОСТ 14254-96 (МЭК 529-89).

1.3 Устройство и работа

- 1.3.1 Задатчик выполнен в виде законченного функционального узла, внешний вид и габаритные размеры прибора приведены в Приложении А. В корпусе изделия находится печатная плата, на которой смонтированы электронные узлы.
- 1.3.2 Электрическая схема прибора состоит из усилительного тракта и узла микропроцессорной обработки сигнала.
- 1.3.3 Работа с прибором:
 - пользователь настраивает верхнюю и нижнюю границы, задаваемого параметра;
 - при помощи потенциометра «R» (см. приложение Б) или кнопок на лицевой панели прибора пользователь устанавливает задаваемый параметр, контролируя его значение по показаниям цифрового индикатора;
 - на токовом выходе формируется сигнал 4 20 мА, пропорциональный текущему значению задаваемого параметра, при этом нижнему значению соответствует ток 4 мА, верхнему 20 мА;
- 1.3.4 Для настройки прибора служат кнопки ⚠, У и Б. Назначение кнопок приведено в таблица 1.

Таблица 1

Наименование	Маркировка	Назначение	
Кнопка выбора режима рабо-	E	Вход в меню и переход между пунк-	
Кнопка «Больше»	^	Увеличение значения параметра	
Кнопка «Меньше»	~	Уменьшение значения параметра	

1.4 Маркировка и пломбирование

На корпусе прибора должна быть маркировка, которая должна включать: товарный знак предприятия, наименование прибора, заводской номер прибора. Корпус прибора должен быть опломбирован для контроля доступа посторонних лиц. Место размещения пломбы — стык передней и задней частей корпуса (см. рис. 1, Приложение A).

1.5 Упаковка

К заказчику прибор поступает упакованный в индивидуальной упаковке, в которую также вложены эксплуатационные документы согласно комплекта поставки. Неиспользуемый по назначению прибор должен храниться в этой таре.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

2.2.1 К работе с прибором допускаются лица, прошедшие подготовку по его эксплуатации и изучившие настоящий документ.

2.1.2 **ЗАПРЕЩАЕТСЯ:**

- подключение внешних цепей с параметрами, превышающими приведенные в п. 1.2.6;
- использовать прибор не по назначению;
- подавать напряжение больше 3 В на токовый вход контакт 5 (см. приложение Б4).

2.2 Подготовка индикатора к использованию

- 2.2.1 Установить прибор на щите.
- 2.2.2 Подключить прибор к внешним устройствам в соответствии со схемой, приведенной в Приложении Б1.
- 2.2.3 Подать питание.

2.3 Использование изделия

- 2.3.1 Режимы работы прибора:
 - режим измерения текущего значения параметра и формирование выходного тока;
 - 2) режим настройки.

2.4 Настройка прибора

Настройка прибора осуществляется при помощи меню.

Основные принципы работы с меню

- Для того чтобы войти в меню, кратковременно нажмите кнопку .
 Переход между пунктами меню осуществляется кнопками .
- Для того чтобы войти в пункт меню, кратковременно нажмите кнопку **Б**.
- Для изменения значения параметра используются кнопки 🖎 и 💟
- Для перехода в меню более высокого уровня или в режим измерения необходимо нажать и удерживать кнопку **Е** в течение интервала времени, превышающего 2 секунды.

Внимание: Если прибор находится в режиме настройки в пассивном состоянии более 30 секунд, то он возвращается в режим измерения, без сохранения измененных значений настройки. Для сохранения измененных значений настроек необходимо выйти из «меню настроек» в рабочий режим измерения.

1) Меню «Настройка яркости индикатора»

- а)Для входа в меню нажмите кнопку **Е**. На дисплее отобразиться: **=07**.
- b)Кратковременно нажмите кнопку **Б** и с помощью кнопок № или **№** настройте необходимую яркость свечения индикатора.

с)Для перехода в меню верхнего уровня нажмите и удерживайте кнопку **Б** в течение интервала времени, превышающего 2 секунды один раз, или несколько раз для выхода из меню.

2) Меню «Настройка границ задаваемого параметра»

- а)Для входа в меню нажмите кнопку **Б**. На дисплее отобразиться: **=07**.
- b)Кратковременно нажимайте кнопку Ф до тех пор, пока на дисплее не отобразиться: **=08**.
- с) Кратковременно нажмите кнопку **Г** и с помощью кнопок № или **№** выберите параметр **Р01** или **Р02**. Параметру Р01 соответствует минимальная величина задаваемого параметра; а параметру Р02 соответствует значение максимальной величины.
- е)Для перехода в меню верхнего уровня нажмите и удерживайте кнопку **Б** в течение интервала времени, превышающего 2 секунды один раз, или несколько раз для выхода из меню.

3) Меню «Контроль источника тока

- а)Для входа в меню нажмите кнопку **Г**. На дисплее отобразится: **гол**.
- b)Кратковременно нажимайте кнопку а до тех пор, пока на дисплее не отобразиться: **=10**.
- с) Кратковременно нажмите кнопку **F** и с помощью кнопок № или № выбирайте значения **4**, **12**, **20**. При этом выходной ток прибора должен принимать значения 4, 12, 20 мА соответственно. Ток можно проконтролировать при помощи амперметра на токовом выходе датчика.
- d)Для перехода в меню верхнего уровня нажмите и удерживайте кнопку **Б** в течение интервала времени, превышающего 2 секунды один раз, или дважды для выхода из меню.

10) Меню «Выбор режима работы»

- а) Для входа в меню необходимо кратковременно нажать кнопку **E**. На дисплее должно отобразиться: **=07**.
- b) Последовательно нажимайте кнопку мили №, пока на дисплее не отобразится =14.
- с) Кратковременно нажмите кнопку **Б** и с помощью кнопок м или № выберите режим работы прибора согласно таблице 3.

Таблица 1

	таолица т	
Режим работы	Обозначение на индикаторе	
Задание тока с помощью потенциометра.	01	
Задание тока с помощью кнопок ▲ и ¥ на лицевой панели прибора.	02	

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Каждые 24 месяца проводить периодическое техническое обслуживание, включающее в себя чистку контактов клеммного соединения; каждый месяц очищать лицевую поверхность прибора тканью смоченной водой.

4 ПОВЕРКА ИЗМЕРИТЕЛЯ

Измеритель не реже одного раза в 2 года должен подвергаться периодической поверке по методике, приведенной в Приложении В.

5 ХРАНЕНИЕ

Приборы должны храниться в штатной упаковке в отапливаемом вентилируемом помещении при температуре воздуха от + 5 до + 40 $^{\circ}$ C и относительной влажности до 80 %.

6 ТРАНСПОРТИРОВАНИЕ

Транспортирование приборов может производиться любым видом транспорта при условии защиты упаковки от прямого попадания атмосферных осадков и при температуре окружающей среды от — 50 до + 50 °C. Транспортирование в самолете должно производиться в отапливаемых герметизированных отсеках.

7 УТИЛИЗАЦИЯ

Прибор не содержит драгметаллов, и после окончания срока его эксплуатации следует произвести утилизацию прибора по соответствующим правилам эксплуатирующей организации.

8 PEMOHT

Ремонт приборов осуществляется предприятием—изготовителем. Прибор должен быть направлен по адресу: 620026, г. Екатеринбург, ул. Бажова 174, 3 этаж, ООО КБ «Агава».

ПРИЛОЖЕНИЕ А

А1) Габаритные размеры прибора приведены на рисунке 1.

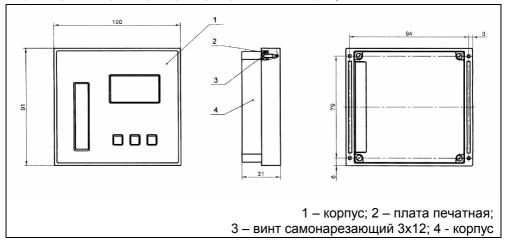


Рис. 1

А2) Габариты окна и разметка отверстий для установки прибора на щите приведены на рисунке 2.

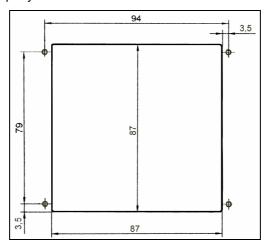


Рис. 2

Диаметр отверстий в щите – 4 мм. Толщина щита – не более 1,5 мм.

ПРИЛОЖЕНИЕ Б

Б1) Схема подключения прибора приведена на рисунке 3.

На схеме:

I -ток 4 - 20 мА;

Rн – сопротивление нагрузки, не более 500 Ом;

E1 – источник питания с напряжением 24 В и током не менее 75 мА.

R – потенциометр 4,7 кОм.

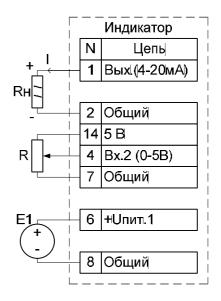


Рис. 3

ПРИЛОЖЕНИЕ В

МЕТОДИКА ПОВЕРКИ

Устройства многофункциональные АДИ-01.5 Методика поверки

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая методика распространяется на устройства многофункциональные АДИ-01.5 (в дальнейшем – устройство) и предназначена для проведения их первичной и периодических поверок при эксплуатации. Межповерочный интервал – 2 года.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей рекомендации использованы ссылки на следующие нормативные документы:

ПР 50.2.006 – 94 «ГСИ. Порядок проведения поверки СИ».

3 ОПЕРАЦИИ ПОВЕРКИ

3.1 При проведении поверки выполняют операции, приведённые в таблице B1.

Таблица В1

	Номер пункта	Проведение операции	
Наименование операции	документа по	Первичная	периодическая
	поверке	поверка	поверка
1. Внешний осмотр	7.1	Да	Да
2. Опробование	7.2	Да	Да
3. Определение метрологических характеристик	7.3	Да	Да

3.2 В случае отрицательного результата при проведении любой из операций по п. 3.1 поверку прекращают, а устройство бракуют.

4 СРЕДСТВА ПОВЕРКИ

4.1 При проведении поверки применяют средства, приведённые в таблице B2.

Таблица В2

Номер пункта документа по поверке	Наименование и тип (условное обеспечение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки
6.1	Термометр ТБ-202 по ТУ 4321-025-31881402-94, предел допускаемой погрешности \pm 1 °C в диапазоне измерений (0 \pm 50) °C Гигрометр психрометрический ВИТ $-$ 2. Диапазон измерений от 20 до 90 %. Погрешность 5 %.
7.2 – 7.3	Источник питания постоянного тока Б5–44, наибольшее значение напряжения – 30 В, пульсации выходного напряжения не более 1 мВ, нестабильность – не более 0,05 %. Секундомер СОП пр–2а–3 пр. Диапазон измерений от 0 до 30 минут. 3 класс. Мультиметр цифровой АРРА 305 0 – 1000 В 0 - 10 А, погрешность ± 0,06 %

- 4.2 Средства поверки указанные в таблице В2, должны быть поверены.
- 4.3 Допускается применение других средств поверки, не приведенных в таблице 3, но обеспечивающих определение (контроль) метрологических характеристик поверяемого измерителя с требуемой точностью.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки должны быть соблюдены требования безопасности эксплуатации поверяемых устройств и применяемых средств поверки, указанные в документации на эти средства.
- 5.2 Освещённость рабочего места поверителя должна соответствовать требованиям действующих санитарных норм.
- 5.3 Перед проведением поверки необходимо ознакомиться с Руководством по эксплуатации устройств.

6 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

- 6.1 При проведении поверки должны соблюдаться следующие условия:
- 6.1.1 Поверку устройств проводят в закрытом помещении при температуре окружающего воздуха (23 \pm 5)° С при относительной влажности (65 \pm 15) %. Температура в процессе поверки не должна изменяться более чем на 2° С за 8 часов работы.
- 6.1.2 Перед проведением поверки проводят, при необходимости, расконсервацию устройства и выдерживают его не менее двух часов в условиях, указанных в 6.1.1 настоящей методики.
- 8.1.3 Вибрация, тряска и удары, влияющие на работу устройства должны отсутствовать.

- 6.1.4 Напряжение питания источника постоянного тока должно соответствовать требованиям Руководства по эксплуатации.
- 6.1.5 Перед проведением поверки выполнить следующие подготовительные работы:
 - подготовить средства поверки к работе в соответствии с эксплуатационными документами на них;
 - подготовить устройство к работе в соответствии с п.2.2 Руководства по эксплуатации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр.

При внешнем осмотре устанавливают соответствие устройства следующим требованиям:

- приборы, поступающие на поверку, укомплектованы согласно требованиям эксплуатационной документации (должны иметь паспорт или документ его заменяющий);
- поверхности деталей устройств чистые, и не имеют существенных дефектов лакокрасочных покрытий, механических повреждений;
- надписи и обозначения не повреждены и легко читаются;

7.2 Опробование.

- 7.2.1 Перед проведением опробования прибор должен быть подготовлен к работе в соответствии с требованиями РЭ.
 - 7.2.2 Подключают устройство к системе. Работоспособность устройства проверяют, изменяя значение входного тока или входного напряжения от нижнего предельного значения до верхнего. При этом должно наблюдаться изменение показаний цифрового индикатора и светодиодной линейки.
- 7.3 Определение метрологических характеристик.

Определение приведённой погрешности устройств проводят в следующей последовательности.

7.3.1 Поверка выходного токового сигнала.

7.3.1.1 Для поверки выходного токового сигнала должна быть собрана схема, приведенная на рисунке 4.

РА1 — + 1 Выход4-20мА — В1 — 8 Общий — 2 Общий — Рисунок 4

На схеме:

РА1 – Мультиметр цифровой АРРА 305;

Rн - сопротивление C2-33-2-500 Ом ± 5 %;

E1 – источник питания постоянного тока Б5-44.

- 7.3.1.2 Переключают поверяемый прибор в режим контроля выходного тока (меню настройки **=10**).
- 7.3.1.3 Последовательно задают на индикаторе значения тока 4 мA, 12 мA, 20 мA.
- 7.3.1.4 На каждой поверяемой точке выдерживают паузу не менее 5 с и фиксируют показания цифрового мультиметра.
- 7.3.1.5 Приведенную погрешность вычисляют по формуле.

$$\gamma_{npsi} = \frac{I_{0i} - I_i}{16} * 100\%$$

где I_{0i} – заданное на цифровом индикаторе значение тока, (мA) I_i – измеренное значение тока цифровым мультиметром, (мA)

Прибор признают годным по результатам поверки, если во всех поверяемых точках приведённая погрешность его не превышает нормированного значения, в противном случае прибор бракуют.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Если прибор по результатам поверки признают годным к применению, то делают запись о поверке в паспорте, заверяя ее подписью поверителя и оттиском поверительного клейма или выдают «Свидетельство о поверке» в соответствии с требованиями ПР 50.2.006.
- 8.2 Если прибор по результатам поверки признают непригодным к применению, поверительное клеймо гасят, «Свидетельство о поверке» аннулируют, выписывают «Извещение о непригодности» с указанием причин и делают соответствующую запись в паспорте.