# РЕКОМЕНДАЦИИ ПО НАСТРОЙКЕ ПИД-РЕГУЛЯТОРОВ В КОНТРОЛЛЕРЕ «АГАВА 6432»

## Введение

В контроллере «АГАВА 6432» программно реализована следующая формула ПИД-закона дискретного регулирования:

$$\Delta T_{n} = \frac{Kp \cdot Tmeo}{\Delta T} \cdot \left[ \left( 1 + \frac{\Delta T}{Ti} + \frac{Td}{\Delta T} \right) \cdot E_{n} - \left( 1 + 2\frac{Td}{\Delta T} \right) \cdot E_{n-1} + \frac{Td}{\Delta T} \cdot E_{n-2} \right]$$
(1)

где

*n* – номер такта регулирования

 $\Delta T_n$  — длительность импульса управляющего воздействия на n-такте

 $\Delta T$  – интервал дискретности (период регулирования)

Кр – коэффициент пропорциональности

Ттео – время хода исполнительного механизма

*Ti* – постоянная времени интегрирования

*Td* – постоянная времени дифференцирования

*En* – сигнал рассогласования на n-такте

Суть предлагаемой методики заключается в том, что параметры объекта непосредственно не определяются, а в скрытой форме оцениваются в процессе самой настройки, когда контур регулирования уже замкнут, но ещё не настроен.

#### ВНИМАНИЕ!!!

Настройку параметров регулирования следует производить после наладки режимов горения и соотношения топливо/воздух. Указанные операции осуществляют при отключенных регуляторах.

## Методика настройки

- 1. Определяют значение *Tmeo*. Для этого при помощи секундомера замеряют время хода исполнительного механизма в зоне регулирования;
- 2. Рассчитывают значение интервала дискретности, исходя из соотношения:

$$\Delta T = (0.05 \div 0.1) Tmeo (2)$$

- 3. В соответствующих пунктах меню настроек контроллера устанавливают рассчитанное и измеренное значения  $\Delta T$  и *Tmeo*.
- 4. Переводят выбранный контур в режим  $\mathbf{\Pi}$ -регулятора, для чего отключают интегральную и дифференциальную компоненты, либо устанавливают значение  $\mathbf{Ti}$  максимально возможным, а значение  $\mathbf{Td}$  минимально возможным.

5. Контур регулирования выводят на границу устойчивости. Для этого постепенно увеличивают коэффициент пропорциональности *Кр* до критического значения *(Кр крити)*, при котором контур войдет в режим колебаний (см. рис. 1).

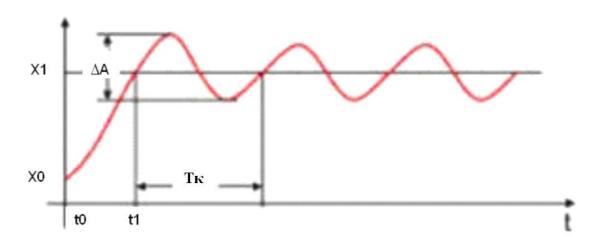



Рис.1

6. Определяют период колебаний **Тк** и критическое значение **Кр крит**. Далее, по приведённым ниже формулам, рассчитывают требуемые значения параметров:

– для  $\Pi$ -регулятора:  $\mathit{Kp} = 0.5 \; \mathit{Kp} \; \kappa \mathit{pum};$ 

– для  $\Pi M$ -регулятора:  $Kp = 0.45 \ Kp$  крим и  $Ti = 0.83 \ T\kappa$ ;

– для  $\Pi U \mathcal{I}$ -регулятора:  $\mathit{Kp} = 0{,}60~\mathit{Kp}~\kappa \mathit{pum}$  ,  $\mathit{Ti} = 0{,}50\mathit{T\kappa}$  и  $\mathit{Td} = 0{,}125~\mathit{T\kappa}$ .

# Замечания, касающиеся выбора значения $\Delta T$ :

- 1. Увеличение интервала дискретности  $\Delta T$  по отношению к Tmeo (2) приводит к росту динамической ошибки. С другой стороны, чрезмерно заниженное абсолютное значение  $\Delta T$  не позволяет минимизировать величину статической ошибки.
- 2. Если расчетное значение  $\Delta T$  (п.2) получилось слишком малым необходимо применить более медленный исполнительный механизм, или изменить размеры сопрягающих рычагов.

#### Авторы рекомендаций:

Проф. Лукас В.А. г. Берлин, <u>w.a.lukas@web.de</u>

Эрман Г.З. <a href="mailto:erman@kb-agava.ru">erman@kb-agava.ru</a>