БОЛЕЕ 30 ЛЕТ НА РЫНКЕ АВТОМАТИЗАЦИИ ОБЪЕКТОВ ЭНЕРГЕТИКИ
 (343) 262-92-76,  (343) 262-92-78
 г. Екатеринбург,  ул. Бажова 174,  3-й этаж

Рекомендации по настройке ПИД-регуляторов в контроллере АГАВА 6432.20

Введение

1. Согласно теории автоматического регулирования параметры регулятора однозначно связаны с характеристиками объекта регулирования. Поскольку изготовитель автоматики не имеет информации об этих характеристиках, заводские настройки контроллера выбраны для некого абстрактного объекта, и задача наладчика состоит в том, чтобы подобрать оптимальные параметры регулятора для конкретного котла или печи.

Ниже приведены две методики настройки ПИД-регулятора:

Методика №1 - параметры объекта оцениваются в процессе самой настройки;
Методика №2 - параметры объекта определяются путем анализа переходной характеристики.

2. В программе контроллера АГАВА 6432.20 (с версии 08.30) реализованы два независимых алгоритма регулирования:

1) позиционный ПИД-регулятор для исполнительного механизма (ИМ) с аналоговым управлением (например, ЧРП):

2) скоростной ПИД-регулятор для ИМ типа МЭО:

где:
outn – выходной сигнал ПИД регулятора от 0 до 100% значения тока, выдаваемое на исполнительный механизм, в текущем периоде регулирования;
Kp – коэффициент пропорциональности;
Kd – коэффициент дифференцирования, с;
Ki – коэффициент интегрирования, с;
En – текущее значение ошибки (от -100 до 100 %),
En-1 –значение ошибки в предыдущем периоде регулирования (от -100 до 100 %),
En-2 –значение ошибки на n-2 шаге (от -100 до 100 %).
T – период регулирования, с.

Примечание. Длительность импульса, выдаваемая на исполнительный механизм типа МЭО в скоростном ПИД-регуляторе равна:

где:
tn - длительность управляющего импульса на МЭО
yn – рассчитанная длительность текущего импульса, %;
Тмэо – время полного хода исполнительного механизма, с;

МЕТОДИКА №1

Суть предлагаемой методики заключается в том, что параметры объекта непосредственно не определяются, а в скрытой форме оцениваются в процессе самой настройки, когда контур регулирования уже замкнут, но ещё не настроен.

ВНИМАНИЕ!!!

Настройку параметров регулирования следует производить после наладки режимов горения и соотношения топливо/воздух. Указанные операции осуществляют при отключенных регуляторах.

Последовательность настройки

  1. Определяют значение Tmeo. Для этого при помощи секундомера замеряют время хода исполнительного механизма в зоне регулирования;

    Примечание. для ЧРП допускается время хода взять равным “Времени разгона ЧРП” из настроек ЧРП.

  2. Рассчитывают значение периода регулирования, исходя из соотношения: Т=(0,05÷0,1)Тmeo

  3. В соответствующих пунктах меню настроек контроллера устанавливают рассчитанное и измеренное значения T и Tmeo.

    Примечание. Для ЧРП устанавливают только T.

  4. Переводят выбранный контур в режим П-регулятора, для чего отключают интегральную и дифференциальную компоненты, т.е. устанавливают значение Ti максимально возможным, а значение Td - минимально возможным.

  5. Контур регулирования выводят на границу устойчивости. Для этого постепенно увеличивают коэффициент пропорциональности Kp до критического значения (Kp крит), при котором контур войдет в режим колебаний (см. рис. 1).


    Рис.1

  6. Определяют период колебаний и критическое значение Kp крит. Далее, по приведённым ниже формулам, рассчитывают требуемые значения параметров:

    • для П-регулятора: Kp = 0,5 Kp крит;

    • для ПИ-регулятора: Kp = 0,45 Kp крит и Ti = 0,83Tк;

    • для ПИД-регулятора: Kp = 0,60 Kp крит, Ti = 0,50 и Td = 0,125Tк.

Замечания, касающиеся выбора значения T:

  1. Увеличение периода регулирования T по отношению к Tmeo (п.2) приводит к росту динамической ошибки. С другой стороны, чрезмерно заниженное абсолютное значение T не позволяет минимизировать величину статической ошибки.
  2. Если расчетное значение T (п.2) получилось слишком малым необходимо применить более медленный исполнительный механизм, или изменить размеры сопрягающих рычагов.

МЕТОДИКА №2

В основе данной методики лежит анализ переходной характеристики (Рис 1).

Сигнал, вырабатываемый ПИД-регулятором, определяется тремя компонентами:

Kp

коэффициент пропорциональности

Настройка(1 этап)

Ki

коэффициент интегрирования

Настройка(3 этап)

Kd

коэффициент дифференцирования

Настройка(2 этап)

ВНИМАНИЕ!!!

Настройку параметров регулирования следует производить после наладки режимов горения и соотношения топливо/воздух. Указанные операции осуществляют при отключенных регуляторах.

Этап 1. Настройка пропорциональной компоненты ПИД-регулятора

Перед настройкой пропорциональной компоненты регулятора интегральная и дифференциальная компоненты отключаются, либо значение Ki устанавливается максимально возможным, а значение Kd - минимально возможным.

Устанавливают первоначальное значение коэффициента пропорциональности Kp, Tmeo, T, руководствуясь "Рекомендациями по настройке ПИД-регуляторов в контроллере "АГАВА 6432.20" или используя заводские настройки контроллера.

  1. Экспериментально снимается (если это допустимо по технологическим условиям) и регистрируется при помощи программы " АГАВА РТ " характеристика переходного процесса.

  2. Возможные варианты кривых переходной характеристики приведены на рис.2.


Рис.2

Переходная характеристика 1
Значение коэффициента пропорциональности очень велико, переходная характеристика (а значит, и настройка регулятора) далека от оптимальной. Коэффициент пропорциональности следует уменьшить. При этом надо иметь в виду, что варьировать пропорциональную компоненту можно двумя переменными: в явном виде, изменяя Kp и подбирая период регулирования T. Исходное значение T рассчитывают по формуле:

Т=(0,05÷0,1)Тmeo

Переходная характеристика 2
Для этой кривой характерны затухающие колебания (3-5 периодов). Если в дальнейшем предполагается использовать и дифференциальную компоненту ПИД-регулятора, то выбранное значение коэффициента пропорциональности является оптимальным. Для этого случая настройка пропорциональной компоненты считается законченной.

Если дифференциальная компонента использоваться не будет, то рекомендуется еще уменьшить Kp так, чтобы получились переходные характеристики типа 3 или 4.

Переходная характеристика 3
В этой переходной характеристике имеет место небольшой выброс и быстро затухающие колебания (1-2 периода). Этот тип переходной характеристики обеспечивает хорошее быстродействие и быстрый выход на заданную температуру. В большинстве случаев его можно считать оптимальным, если в системе допускаются выбросы при переходе с одной уставки на другую или при резком изменении нагрузок, например, при изменении расхода пара.

Выбросы можно устранить дополнительным уменьшением Kp так, чтобы получилась переходная характеристика типа 4.

Переходная характеристика 4
Регулируемый параметр плавно подходит к установившемуся значению без выбросов и колебаний. Эта тип переходной характеристики также можно считать оптимальным, однако быстродействие регулятора несколько снижено.

Переходная характеристика 5
Сильно затянутый подход к установившемуся значению говорит о том, что коэффициент пропорциональности чрезмерно занижен. Динамическая и статическая точность регулирования здесь мала. Рекомендуется увеличить значение Kp.

Следует обратить внимание на два обстоятельства. Во-первых, во всех рассмотренных выше случаях установившееся значение параметра в системе не совпадает со значением уставки. Чем меньше коэффициент пропорциональности, тем больше остаточное рассогласование.

Во-вторых, чем меньше коэффициент пропорциональности, тем больше длительность переходных процессов.

Однако остаточное рассогласование, характерное для чисто пропорциональных регуляторов (П-регуляторов), минимизируется интегральной компонентой регулятора (ПИ-регулятор).

Выводы:

  1. Во всех рассмотренных выше случаях установившееся значение параметра в системе не совпадает со значением уставки. Чем меньше коэффициент пропорциональности, тем больше остаточное рассогласование.
  2. Чем меньше коэффициент пропорциональности, тем больше длительность переходных процессов.
  3. Остаточное рассогласование, характерное для чисто пропорциональных регуляторов (П-регуляторов), минимизируется интегральной компонентой регулятора (ПИ-регулятор).

Этап 2. Настройка коэффициента дифференцирования Кd


Рис.3

  1. Этот этап присутствует только в том случае, если применяется полнофункциональный ПИД-регулятор. Если дифференциальная компонента применяться не будет (используется ПИ-регулятор), то следует сразу перейти к этапу 3 (Настройка интегральной компоненты Кi).
  2. Устанавливают первоначальное значение Кd. При этом можно использовать «Рекомендации по настройке ПИД-регуляторов в контроллере "АГАВА 6432.20" или применить заводские настройки контроллера.
  3. Предположим, что на этапе 1 установлен коэффициент пропорциональности, соответствующий переходной характеристике типа 1 показанной на рис.3, в которой присутствуют затухающие колебания. В этом случае следует выбрать такое значение Кd, чтобы переходная характеристика имела вид кривой 2 на рис.3. В качестве первого приближения, постоянную времени дифференцирования можно рассчитать по формуле:

    Кd = 0,2 x Tk

    где Tk - период колебания (Рис.1).

Вывод: Дифференциальная компонента устраняет затухающие колебания и делает переходную характеристику, похожей на тип 2 (см. рис.3). Это значит, что динамическая точность регулирования при наличии дифференциальной компоненты (ПД-регулятор) может быть выше, чем для П-регулятора.

Этап 3. Настройка величины коэффициента интегрирования Кi

После настройки пропорциональной и, при необходимости и дифференциальной компоненты, получается переходная характеристика 1, показанная на рис 4.


Рис.4

  1. Начальное значение постоянной времени интегрирования следует установить, руководствуясь "Рекомендациями по настройке ПИД-регуляторов в контроллере "АГАВА 6432.20" или используя заводские настройки контроллера.
  2. Возможные варианты кривых приведены на рис.4.

Переходная характеристика 1
Значение Кi выбрано слишком большим, следует уменьшить значение коэффициента интегрирования Кi.

Переходная характеристика 2
Такая кривая получается при чрезмерно большой величине коэффициента интегрирования. Выход на уставку оказывается затянутым и длится примерно (3...4) х Кi. В этом случае рекомендуется уменьшить значение коэффициента интегрирования Кi.

Переходная характеристика 4
Получается при слишком малой величине коэффициента интегрирования. Выход на уставку также длится (3...4) x Кi. Если коэффициента интегрирования уменьшить еще, то в системе могут возникнуть колебания. Следует увеличить значение коэффициента интегрирования Кi.

Переходная характеристика 3
Значение коэффициента интегрирования Кi выбрано оптимально.

Выводы: Интегральная компонента позволяет минимизировать остаточное рассогласование между установившимся в системе значением регулируемого параметра и уставкой.